
JOURNAL OF COMPUTATIONAL PHYSICS 41, 1-33 (1981) 

Optimal Time Splitting for Two- and Three-Dimensional 
Navier-Stokes Equations with Mixed Derivatives* 

SAUL ABARBANEL AND DAVID GOTTLIEB 

Department of Mathematical Sciences, 
Tel-Aviv University, Tel-Aviv, Israel 

Received March 3, 1980; revised September 9, 1980 

A new explicit, time splitting algorithm has been developed for finite difference modelling of 
the full two and three-dimensional time-dependent, compressible, viscous Navier-Stokes 
equations of fluid mechanics. The scheme is optimal in the sense that the split operators 
achieve their maximum allowable time step, i.e., the corresponding Courant number. The 
algorithm allows a conservation-form formulation. Stability is proven analytically and verified 
numerically. In proving stability it was shown that all nine matrix coefficients of the 
Navier-Stokes equations are simultaneously symmetrizable by a similarity transformation. 
Two such transformations and their resulting symmetric matrix coefficients are presented 
explicitly. 

I. INTRODUCTION 

During the 1970s there has been growing attention paid to the numerical solution 
of the full two-dimensional, time-dependent, viscous, compressible Navier-Stokes 
equations of fluid mechanics; see inter alia [l-4]. MacCormack and Baldwin [4] use 
an explicit time splitting technique, even though the presence of the viscous mixed 
derivative term (due to compressibility) does not allow the usual split in the 
respective spatial-coordinate directions. They attempted to overcome this difficulty by 
apportioning the mixed derivative term among the space-split operators. The resulting 
difference operators do not constitute a “classical” split in the sense of Strang [5], 
Marchuk [6] and others, in that the norms of these split operators (none of which are 
one-dimensional spatially) are not bounded by unity. This complicates the stability 
analysis of their second order finite difference scheme and therefore they present only 
an estimated stability condition. It turns out, even as seen from the estimated 
criterion, that a drawback of their method of splitting is that the time step in each 
direction (x, y) is restricted by the mesh size in the other direction. In particular, 
when dx/dy B 1 (typical, for example, in calculations of boundary layers) the 
allowed time step, even in the x-direction, diminishes as dy/dx. 
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Center, Hampton, VA. 23665. 
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In the present paper we propose a new method of splitting which leads, for any 
explicit second order accurate finite difference scheme, to optimal time steps in all 
directions. The analysis for the (linear) stability of this algorithm is carried out 
analytically for the three-dimensional case (from which the results for the two- 
dimensional case are, of course, found immediately by reduction). This is made 
possible by the construction of a similarity transformation which symmetrizes all the 
matrix coefftcients of the Navier-Stokes equations simultaneously (there are nine 
such coefftcients matrices in the three-dimensional case and five in the two- 
dimensional case). 

In Section II we present the governing three-dimensional fluid dynamic equations 
both in conservation and non-conservative forms. We show how the nine matrix coef- 
ficients of these Navier-Stokes equations may all be symmetrized simultaneously by 
a similarity transformation. 

In Section III we present the new method of splitting, which may be used in 
conjunction with any finite difference algorithm. We also present one particular three- 
dimensional explicit algorithm resulting from the repeated application of the 
MacCormack one-dimensional scheme. 

The (linear) stability analysis is carried out fully for the three-dimensional case in 
Section IV. 

In Section V we present numerical evidence to support the conclusions predicted 
by the analysis. 

In Appendix A we summarize the results of Sections II and III for the two- 
dimensional case. This is done to allow ease of application for those interested 
primarily in two-dimensional problems. 

II. THE NAVIER-STOKES EQUATIONS 

The time-dependent compressible viscous fluid dynamic equations in three- 
dimensions, and in the absence of body forces, may be written in conservation form 
as 

where the transpose of the vector U is given by @, pu, pv, pw, e), and 

(2.1) 
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The various parameters and dependent variables p, u, v, w, ,u, A, e, k, T and p are 
respectively the density, the x, y and z components of velocity, the shear and second 
coefficients of viscosity, the total energy per unit volume, the coefficient of heat 
conduction, the temperature and pressure. An equation of state p = p(&, p) relates the 
pressure to the density and the specific internal energy, E = (e/p) - (u’ + v2 t w2)/2. 

In non-conservative form the Navier-Stokes equations for a perfect gas may be 
written as 

+Df+~+E,,~+Eyz~+E a’v, (2.3) axay ayaz TX azax 

where V is the column vector @, U, v, w, p) and the coefftcient matrices are given by 

A=[;i;; l/j, ~=[~iBi 1~~1, (2.4) 
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where y is the ratio of specific heats and P, is the Prandtl Number. 
It has been shown in the past [7, 81 that in the two-dimensional case the two 4 X 4 

“hyperbolic” matrices (corresponding to A and B in (2.3)) may be symmetrized 
simultaneously. We were motivated to ask whether all nine coefficient matrices in 
(2.3) can be symmetrized simultaneously. A systematic way to find out is to start 
with the realization that if a set of m X m matrices A , ,..., A,, is to be simultaneously 
symmetrizable then there must be a similarity transformation S characterized by the 
following: S’A,S, for some 1 < j < n is diagonal and S- ‘A,S is symmetric 
V 1 < k < n. If Aj does not have multiple eigenvalues we may then start by 
constructing a matrix T from the eigenvectors of Aj, and if Al,..., A, are indeed 
simultaneously symmetrizable, then the most general symmetrizer for A, is S = T/i 
for some diagonal matrix A. The diagonal matrix /i is then found from the conditions 
stemming from the requirement that T- ‘A, T/i* be symmetric for all k # j. Since 
there are m(m - l)(n - 1)/2 equations to determine the n elements ofli, there will be 
no solution if the set of given matrices is not simultaneously symmetrizable. At first 
glance it seems that the above procedure will fail since all nine matrix coefficients 
have multiple eigenvalues. A closer inspection will show however that the matrices C, 
D and K are “almost” diagonal in that their only non-zero off diagonal term is a 
corner element while the multiple eigenvalues, p/p, lie in the inner 3 x 3 minor. Thus 
we really have to diagonalize only a 2 x 2 “outer” matrix of the form 
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which has distinct roots. Therefore, the matrix coefftcients of the Navier-Stokes 
equations meet the conditions stated above and hence can be simultaneously 
symmetrized. 

We now present two such symmetrizers. The first is derived by first diagonalizing 
the matrix A. The resulting similarity transformation is related to the one given in 
[ 7, 81 and we designate it S, to indicate that we start with the hyperbolic portion of 
the equations. ’ 
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where c = (yp/p)“’ is the speed of sound and j?= \/20. For the sake of 
completeness the symmetrized matrices are now given: u 0 00 0 0 u+c 0 0 0 

, 
0 0 ou 0 

I Note that A does have a triple eigenvalue, u, and yet our procedure worked. 
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It turns out, however, that this form of the symmatrized coeffkients is not suitable for 
the stability analysis. This point will become evident in Section IV. We therefore 
sought another similarity transformation. The construction of this second 
symmetrizer is based on the observation that the coefficient matrices C, D and K 
commute and are, therefore, simultaneously. diagonalizable. We designate this 
similarity transformation by S, to indicate that it is related to the parabolic part of 
the equation. 
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s,‘: 
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These symmetrized matrix coefficients are simpler than those produced by the first 
symmetrizer, and are given by 
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Notice that the coefficients of the mixed derivatives remain unchanged under the 
similarity transformation, being symmetric to being with. 

III. THE NEW SPLITTING 

If one is interested in time splitting the Navier-Stokes equations, there are several 
ways of doing it. MacCormack and Baldwin [4], for example, use the two- 
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dimensional version of (2.2) to indicate how to split the two-dimensional conser- 
vation form of the Navier-Stokes equations: 

v”+z = (L*L,L,L*) V”, (3.1) 

where V” is the finite difference vector approximation to U(n At) and L I is the finite 
difference operator mapping W(ndt) into W((n + 1)dt) using the equations 
@W/at) + (8Fla.x) = 0. Similarly L, maps W(n At) into W((n + 1) At) simulating 
(aW/at) + (aG/@) = 0. This method means in effect that in the two-aimensional 
version of Eq. (2.3) the matrix coefficient of the mixed derivative term, E,, has to be 
split in two: 

Px,,lm = 

0 0 0 0 

0 0 i 0 
P 

0 f 0 0 

0 0 0 0 

-0 0 0 o- 

LJZD = 
0o;o 

9 
o”o0 

P 

-0 0 0 0, 

Note that because A < 0 for real fluids, these matrices have imaginary eigenvalues 
and hence cannot be symmetrized at all. Consequently, as may be easily verified, 
IILl and ILlI are greater than unity, which means that this kind of split is not 
“classical” in the sense of Strang [5]. 

We now propose a new method of splitting. We first rewrite the conservation-form 
equations in the suggestive way 

where the subscripts (H, P, M) denote, respectively, the appropriate hyperbolic, 
parabolic and mixed derivative parts of the original flux vectors F, G and H. The new 
fluxes are given by 
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H,= 

This leads to the following time splitting: 
Let L, be a finite difference scheme that solves (&J/at) + (aF,/&) = 0. 
Let L,, be a finite difference scheme that solves (Xl/at) + (aF,/ax) = 0. 
Let L, be a finite difference scheme that solves (Xl/&) + (aG,/@) = 0. 
Let L,,, be a finite difference scheme that solve (&J/at) + (8G,/@) = 0. 
Let Lz be a finite difference scheme that solves (cXJ/&) + (aH,/az) = 0. 
Let LLz be a finite difference scheme that solves (XJ/at) + (aH,/az) = 0. 
Let Lx,, be a finite difference scheme that solves (W/at) + (aF,/ax) + 

(X,/+) + (8L/az) = 0. 
Then the new algorithm is constructed as 

where 

and [. ] designates the nearest greater integer, unless the quantity in question happens 
to be an integer and then [-I takes this integer value. If we deal with second order 
accurate schemes for each of the operators then, within linear stability for each of 
them, S, Q, u, r, and t, take the following meanings: 

S = [(~(~>(~x>‘l~(C)(~~)‘)“21 is related to the mesh stretching, assuming Ax > Ay, 

Q = ~~~~~>~~~>21~~~~~~~~21”21 is related to the mesh stretching in the other direction 
(Ax > AZ), 

u = [2r(C)/r(A)(Ax)] ’ t is wice the reciprocal of the cell Reynolds number, 
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where r(A), r(B), r(J), r(C), r(D), r(K) are, respectively, the spectral radii of the coef- 
ficient matrices A, B, J, C, D and K defined in Section II. The above relations 
determine (from the point of view of accuracy) At,,, At,, At,,, At,, and At,, as 
functions of At,. The various subscripts of At indicate the corresponding finite 
difference operator and thus, for example, At, is given by the stability condition of 
L X, i.e., At, < Ax/r(A) (at least for all centered second order one-dimensional 
schemes). Notice that (3.6) implies that Atxy, is taken equal to At,. This very 
surprising result is established in Section IV. 

We now present an explicit example of an implementation of the above procedure 
based on the MacCormack scheme. We start with the hyperbolic split operator in the 
x-direction 

iJ&, = u;,&,, - 45 Ax tFGj+ 1.k.l - Fij,k.l), 

Here we used the standard notation for finite difference schemes. Next consider the 
parabolic split operator in the x-direction 

where the x-derivative terms appearing in Fi are expressed by backward differencing; 

here, however, the x-derivatives inside Fc are expressed by forward dl@?rencing; 

Similarly, for the hyperbolic split operators in the y and z directions we have 

(3.10) 
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and 

qk*.,= Utk,~-$(fGj.,,, -H*Hj.k.,-I)’ 
q:,: = s-q,,,, + qy$ = u%) q,,,,. (3.11) 

The parabolic split operators in the y and z directions (with the order of backward 
and forward differencing being the same as in the x-split parabolic operator, see 
(3.9)) are given by 

(3.12) 

and 

vxl = U?k,, - % (HFj,k,, - fGj,k,,- 11, 
q,,:,: = fcq,,,., + q+&) = Lzz(4,) U”. (3.13) 

We now come to the definition of Lxyr. Since the MacCormack differencing method 
cannot be applied in a straightforward manner to the case of mure mixed derivatives, 
we propose a differencing algorithm which is MacCormack-like in its structure: 

u** -u* 
/.k,l- j.k.,-~(FZ,+,.,,,-F*,,-,,,,,) 

-~(Gtj,k+,.,-G~j,,-,,,)-~(H~j,,,,+,-H~j,,,,-,), 

q.,:.: = f(?tk,, + qk*,,) = Lxyz(df.& U;,,k,,, (3.14) 
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where all the derivatives appearing in I;;, F&, G&, G&, H”,, HG are expressed by 
central finite differencing. 

We are now in a position to construct algorithm (3.6) unambiguously for the 
MacCormack scheme and in a similar vain construct it for other finite difference 
schemes. 

It may be shown, using the results in [9], that when we use (3.8) to (3.14) to 
implement algorithm (3.6), the overall scheme is second order accurate in time and 
space. The numerical calculations described in Section V verify this conclusion. 

IV. STABILITY ANALYSIS 

We now examine the (linear) stability of second order accurate finite difference 
approximations to a scalar parabolic partial differential equation which models the 
Navier-Stokes system. We then show that the stability criteria which follow from the 
study of the scalar case generalize appropriately to the full (linearized) Navier-Stokes 
equations. 

Consider the model scalar equation with constant coefficients 

au 2 2 2 

-=ag+bE+jE+cg+d$+k$ 
at aY aY 

a% ah a34 
+ e.W ax ay + eY2 ayaz +~zx-. az ax (4.1) 

The requirement for parabolicity is that the quadratic form 

cw~+dw~+kw~+e,,w,w,+e,,w,w,+e,,w,w,>0, (4.2) 

V -co < w,, w2, wj < co. Necessary (but definitely not sufficient) conditions for 
meeting the definition of parabolicity (4.2) (besides having c, d and k positive) are 

e,,w, w2 < cw: t dw: + e&, < 4cd, (4.3a) 

eyrw2w3 < dw: t kw: 3 e& < 4dk, (4.3b) 

ezxw3w, < kw: + cwt + ei, s 4kc. (4.3c) 

We note in passing that in the two-dimensional case (eyr = erx = 0) the necessary 
condition eXY < 4cd is also sufficient. 

Adding both sides of inequalities (4.3) we get 

cw:tdw:+kw:--~(e,,w,w,+e,,w,w,+e,,w,w,)>0. (4.4) 

Comparing (4.4) with (4.2) we finally get a result which is used later, 

cw:tdw:+kw:-f)e,,w,w,+e,,w,w,+e,,w,w,~>0. (4.5) 
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It is well known that the amplification factor for each split operator is the same for 
all three point centered finite difference schemes and is, in fact, the appropriate 
Lax-Wendroff one [lo]. If we designate by J, the amplification factor corresponding 
to L,, and similarly for the other split operators, then we have 

(4.6a) 

(4.6b) 

(4.6~) 

(4.6d) 

(4.6e) 

(4.6f) 

(4.W 

where a = sin(</2), p = sin(v/2), v = sin([/2); <, v and c being the dual Fourier 
variables of the space coordinates x, y, z. Also 

h, = a At,/Ax, R, = b At,/Ay, AZ = j At,/Az, 

A,, = c A~,,/(Ax)~, A,, = d At,,l(Ay)2, A,, = k A~,,/(Az)~, 

A,, = exy Afxyz jAx AY, A,, = eyz 4,,l4 AZ, A,, = e;, Atxyz/Az Ax, 

and the various At’s are the ones belonging to the split operators indicated by the 
subscripts. Note that while the absolute values of J,, J,, J,, J,,, Jrv, and JZL are 
bounded by unity under their respective one-dimensional stability conditions 

A,< 1, n,< 1, AZ< 1; A,, < +, A,, < +, A,, < 4. (4.7) 

JxyZ is not bounded by 1 and hence, by itself, Lxyr is unconditionally unstable. The 
amplification factor for the whole scheme (3.6) is given by 

M = (JxJxy,~~zJ~~J~~*J~~*)2. 

We show that even though V I,, , A,,, , A,, , ( JxYl 1 > 1 (for some a, p, v) M is “stable,” 
i.e., IMI < 1, under conditions (4.7) for A,, A,, AZ, A,,, A,,,, and A,, provided that 
Atxyz <At,. Since under the specified conditions, IJ,i < 1, IJ,I < 1, IJ,I < 1, it is 
sufficient to investigate the quantity 
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Now Jx,, is of the form Jxyz = 1 - n + (n2/2), where 

n=Ll(n,,aP~~~~+~,,pv~~~~ 

+ A.,, va d-i-7 p?). (4.9) 

Notice that n may be either positive or negative, and we carry the stability 
investigation for either case separately. Consider first the case of n < 0, then 

IJxyl( = 1 - n + (n*/2) < e-“. (4.10) 

Next we evaluate IJxyzj for n > 0 (note that Jxyz > 0 Vn), 

1 Jxyz I= 1 - n + (n2/2) < eni 2. (4.11) 

Referring to (4.6) we have 

J,,= 1 -h<e-h, with O,<h=4A,,a*(l-2~,,a2)<41,,a2(1-a’)<., 

Jyp= 1 --IGee-‘, with 0 < 1 = 4L,,p*( 1 - 2&J?‘) < 4A,,/12( 1 - /I’) < i, 

J,, = 1 - m < e-*, with 0 < m = 41,, v’( 1 - 211,, v’) < 4&, v’( 1 - v’) < 4. 

Therefore 

J&J~~?$“< exp{-4a[l,,a*(l -a*) + I1,,/?*(1 -p’) S* + Arzv2(1 - v’) Q2]}. 

Using the definitions of A,,, A,, , A,,, u, S* and Q’ we have 

lJx,J~~~z21”< exp{-cw: - doi - kw:}, (4.12) 

where we have defined 

(4.13) 

We are now ready to consider the two cases of negative and positive n. 

(i) Case n < 0. Combining (4.10) and (4.12) and using definitions (4.9) and 
(4.13) we have 

a< ew1-~(A~,,,/A~,)( ex,,o,w2 + ey20203 + erxco3a,) + cm: + do: + ko:]}. 
(4.14) 

By referring to the definition of parabolicity (4.2), we get 

A?< 1, (4.15) 

provided that At,,, <At, as claimed above. 
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(ii) Case n > 0. Combining (4.11) and (4.12) and using the same definitions 
we have 

a< fw{-[-~(At,,,/At,)( exyo1w2 + eyzw2q + ezxw30,) + cwf + hi + km:]}. 

By referring to (4.5), we again get 

I@< 1, 

with the same restriction, i.e., At,,, <At,. 
Thus the scalar case analysis is completed and we have established the (linear) 

stability of the model equation (4.1) when solved numerically using algorithm (3.6) 
with Atxvz = At, and conditions (4.7). It should be noted in passing that in the two- 
dimensional case (j = k = eyz = ezx = 0) the stability analysis goes over much more 
readily because the necessary condition for parabolicity (e:, < 4cd) is also sufficient. 

It remains to show that the stability of algorithm (3.6) applied to the 
Navier-Stokes equations follows from the above scalar analysis. Consider the Lz 
norm of (3.6) 

I( U”+‘11 < ~~L,Lb’L~‘L~~L~~,“‘L~~*L~~~L~~2L~~2Lx”~~~ . 11 VII. (4.16) 

Now, after symmetrization the norms of the hyperbolic operators L,, L,, Lz are less 
than (or equal to) unity under conditions (4.7), and thus 

II cT”+*II < I~L,“,L,“,“‘L~~~;Q’L:,~L~~zL~~zL~~~~ * 1) uq 

= IIcLL~;2~%,,I12 . II U”/I, 

where the last equality is due to the parabolicity and symmetry of the indicated split 
operators. The requirement for stability is then 

IIL~&;‘L;?LxyzII < 1. (4.17) 

The corresponding amplification matrix is found from (4.6d)-(4.6g) by replacing 
the various scalar coefficients in the A’s by the appropriate corresponding matrix 
coefficients 

where, as indicated above, 

N = J” J”“‘JJ”“‘J 
xx yy ‘?z xpz 3 

A,, = (Af,J(Ax>*) S, ‘CS,, A,, = W,,/@Y>~) S, IDS,, 

A, = (4J(&)*) S, ‘KS,, 

4, = W,y,/Ax AY) S, lExySp, &a, = (~,,/AY AZ) ~,‘~,J,, 

L = W,,,l(Az Ax)) s,%,&. 
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Notice that the matrices J,,, J,, , J,, , JXyz have the structure 

110 0 0 0 
--,__------ 

Jx, = Jm = 
0 1 

9 

01 
01 
01 .ryy I 

110 0 0 0 
__I-___---- 

0 ’ 

01 
0 I 
0 I &, 

1’0 0 0 0 
--.-----_-_ 

110 0 0 0 
-----__-__ 

Jn = 01 01 
0 ’ Jxyz = 0 ’ 

“,I L 
01 
0 1 TX,, I 

where the lower 4 x 4 matrices JX,, J;,,, &,, fXYz depend only on the 4 x 4 lower 
matrices c, B, K, gX,,, EY,, EzX which appear in S;iCS,, S; IDS,, S;‘KS,, 
S, ‘ExySp, S,‘E,,S, and SF lE,,S,. As a consequence the amplification matrix N 
also has a similar structure. 

N= 

II0 0 0 0 
--,---~-~------~ 

I 
Ol 
01 1. (4.18) 

The stability requirement (4.17) is equivalent to I/ NII < 1. It is readily seen from 
(4.18) that 

IINII = max{ 1; llflll I. 

If we can show that 1lfllj = IIJ&J~~2J$JXJ;lyzII < 1, then the stability of the algorithm 
would have been established. We proceed as follows: 

llflll < II&yzII * IILII” ~115;,11”“’ * llLlloQ2* 

Since JX,, JY, and Jz, are symmetric we may replace their norms by their respective 
spectral radii 

(4.19) 
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If we identify I,,, I,, and A,, respectively with (A~,J(Ax)‘) Ci, (~It,,/(dy)~) Di, 

(Af~z/(Az)~) Ki, h w ere Ci, Di and K, are any one of the eigenvalues of the indicated 
coefficient matrices, then by (4.12) we may replace (4.19) by 

From (4.6g), 

where 

IIJ*yz II = III - n” + W2>ll7 

(4.2 1) 

IIJxy, II < 1 t I/ $11 t (11 cz 11/2) = 1 + r(Z) t (r’(n’)/2) < P). (4.22) 

Substituting (4.22) into (4.20) leads to the requirement for stability 

r(~) ~ COW: + Di”: + KiO:. (4.23) 

In our case, r(,??,,) = T(E,,~) = +??rx) = (A t p)/p and so (4.23) becomes 

(4,,/4M~ +Pu>/P>h% + %03 + 03%) 

< C,w; + D,w; + Kiwi, (4.24) 

where o,, w2, w3 are now taken to be positive. Since (J. f ,~)/p is smaller than any of 
the CI)s, Di)s, and Kts ((A f 2~)/p, p/p, y~/P,p), inequality (4.24), with Atxyz < Atx, 
is always valid. Thus stability has been established for the Navier-Stokes equations. 

V. NUMERICAL RESULTS 

In this section we would like to present some numerical experiments with algorithm 
(3.6) and (A.3.6). We start by considering the scalar two-dimensional equation 

with initial conditions 

u(x, y, 0) = cos 27r(x - y), 

and periodic boundary conditions 

41, YY 0 = @, y, t), 

u(x, 1, t) = 24(x, 2, t). 

(5.2) 

(5.3) 
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The analytic solution of (5.1)-(5.3) is given by 

24(x, y, t) = e-4s21 cos 2n(x - y). (5.4) 

We attempted to solve numerically Eqs. (5.1~(5.3) using the algorithm defined by 
(A.3.6~(A.3.12). Since (5.1) defines a parabolic equation without any “hyperbolic” 
term we have to set dt, =dt, = 0 in (A.3.6). For this same reason we take 
At,, = At,.. . The other equantities appearing in (A3.6) are taken to be 

Atxy = At,, , u= 1, S = AxjAy, At,, = S2 At,,. (5.5) 

We advanced the solution from t = 0 to t = 0.1 with different values for Ax and S. 
The results are summarized in Table I. The first column gives the number of points in 
the x-direction, the second gives the number of points in the y-direction. The third 
column gives the value of S. The fourth column consists of the relative L, errors, that 
is, the L, norm of the error of the numerical results divided by the L,, norms of the 
analytic solution. The fifth column gives the maximum error. 

It is clear from Table I that algorithm (A.3.6) is stable. Moreover comparing the 
L, error for a mesh of 30 x 60 and that of 40 x 80 one gets the factor 0.98 x (!)’ 
which demonstrates the second order accuracy of the algorithm. 

The second problem to be considered is the three-dimensional equation 

with 
u, = u,, + u,, + u,, + u,, + uy, + u,, 2 (5.6) 

u(x, y, z, 0) = cos 272(x - y) + cos 271(x - z) + cos 274 y - z) + 1, 

and periodic boundary conditions in the cube 1 < x, y,z < 2. 
The solution to (5.6) is given by 

24(x, y, z, t) = 1 + eP4n”[U(x, y, z, 0) - I]. (5.7) 

We solve numerically equation (5.6) using algorithm (3.6)-(3.11) with At, = At, = 
At, = 0, 

u= 1, At,, = f(Ax)2, Atxyr = At,,, At,, = S-2 At,,, At,, = Q-’ At,,, 

TABLE I 

1 - 
Ax 

1 
s 

dy 
L 2 error max. error 

20 20 1 4.8 x lo-’ 1.7x 10.’ 
20 20 2 3 x 10-2 1 x 30-” 
30 60 2 1.4 x 1o-2 5.1 x 1o-4 
40 80 2 8 x 10-j 2.9 x 10-j 
20 80 4 2.6 x IO-* 8.6 x lo-” 
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TABLE II 

L 2 error max. error 

10 20 80 2 4 1.8 x 10m3 6.7 x 10-l 
10 10 10 1 1 2.8 x 10-j 1.2 x 10 ? 

20 20 20 1 1 9.8 x 10 -’ 3.8 x 10-j 
30 30 30 1 1 4.6 x IO- 4 1.7 x 10 .’ 

for different values of x, S, and Q and integrating between t = 0 and t = 0.1. The 
results are summarized in Table II. It is evident from Table II that the algorithm is 
stable. Moreover comparing the L, error for the mesh of 20 X 20 X 20 and that for 
the mesh of 30 x 30 x symmetrizes simultaneously 

all nine matrix coefficients of the full three-dimensional Navier-Stokes equations (see 
Eq. (2.7)). 

2. A new time splitting algorithm (see (3.6)) has been constructed which has the 
following properties: 

(i) It is second order accurate in time and has the spatial accuracy of its 
component operators all of which are one dimensional and either purely hyperbolic 
or purely parabolic (with the exception of the mixed derivatives operator). 

(ii) For any explicit, centered, second order accurate finite difference scheme 
(such as Lax-Wendroff of MacCormack) the stability of the algorithm has been 

proven analytically and verified by numerical experiments. 

(iii) This stability is achieved with optimal time-steps for all the one- 
dimensional operators with the surprising result that the mixed derivatives operator 
may be advanced with a time-step equal to the largest of the others. 

3. This algorithm can be cast in conservation form (see Eqs. (3.2)-(3.5) and also 

(3.8~(3.14)). 

APPENDIX A: 

THE TWO-DIMENSIONAL CASE 

A.11. The Two-Dimensional Navier-Stokes Equations 

The equations corresponding to (2.1) and (2.2) are 

(A.2.1) 



26 

with 
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u= 

P 

PU 
, F= 

PO 

e 

PU PU 

PUZ + ~x.x PUZ + ~x.x 
3 3 

PUV + ryx PUV + ryx 

aT aT 
(e+t,,)u+r,,v-k- (e+t,,)u+r,,v-k---- 

ax - ax - 

G= 

i 

PV 

PVU 

Put + ryy 
i 

1 BT 
(e+~,,)v+~x,u-k- 

ay 1 

(A.2.2) 

and 

r xx=p-2p$-n 
( 1 
au+L’ ) 
ax ay 

r ,,=p-2p;--i 
( ) 
au+? ) 
ax ay 

au av 
r xy = 5 yx E-.-P -+-. 

( i ay ax 

The non-conservative form of the Navier-Stokes equations is (see IQ. (2.3)) 

a9 aW a% 
+E----, 

axay 
(A.2.3) 
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. 0 0 0 0 1 
0 Lc!z() 0 

P 

0 Fo 
3 

0 
P 

WP o 
-p,p2 

OYU 
PrP _ 

P 

0 0 

The “hyperbolic” symmetrizer, corresponding to Eq. (2.5) is 

i PP P 0 P 

0 

s, 

c 

0 -c = 

0 0 j/s 0 I ' 

0 PC2 0 pc* 

S,’ = 

Lo 0 1 
PP -ppc2 

0; 0 1 

2pc2 

oo- 
;c O 

0-k 0 1 
2pc2 

(A.2.4) 

(A.2.5) 
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with c = (yp/p)“’ and /3 = dm The symmetrized matrix coeffkients are given 
by 

u 0 0 0 

‘AS, 

0 ufc 0 0 

S, = 0 0 u 0 ’ 

V 

0 - 

0 

A 

V 

PP - P I@ 
-- -- 

P,P 2PrP 
0 

2PrP 

PP P2P -- - + 1 +F o P’P A + &I ~ 

s, ‘CSH = 
2P,p 4P,p 2p --~ Q,P 2P 
0 0 P i 0 

I@ P% A + 2P o P’u + A + 2P -- --___ -- 
- 2PrP Q,P 2P @,P 2P - 

S,‘DS, = 

P PP -. -- -- 
PrP 

pp 0 
2PrP 2PrP 

PP P’P P o -- - 
2P,p 4P,p + 2p 

P’P c1 --- 
4P,P 2P 

0 0 ~ A + 2/l 
0 

P 
PP P'P P o P2u c1 -- --- 

2PrP 4PrP 2P 4P,p + 2p - 

(A.2.6) 
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The “parabolic” symmetrizer, corresponding to (2.7) is 

S,’ = 

s, = 

-*oo 0 
c 

0 1 0 0 

7 
0 0 1 0 

Y-1 zoo ypc J 1 
c 
r 0 0 0 

\/YP 
0 1 0 0 

0 0 1 0 

and the symmetrized coeffkients are then 

S, ‘AS, = 
zi 

Y-1 - ; u 0 7’ 

0 0 2.4 0 

1 4 0 Y-l -c 0 U 
Y 

(A.2.7) 
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S,‘BS, = 

V 

0 

57 

0 

s, ‘a, = 

0 5 
fi O 

V 0 
0 

0 V 
J 

y-lc 

Y 

0 4 2yc V 
Y 

0 

A + 2.u 

P 

0 

0 

0 0 

0 

3 
0 

YP 

PrP- 

S,‘ES, = 

-0 0 0 o- 

0 0 - i+Po 
P 

o- 1+/J o. * 

P 

-0 0 0 o- (A.2.8) 

A.111. The Two-Dimensional Conservation-Form Equations and the Two- 
Dimensional Algorithm 

The two-dimensional conservation form which corresponds to (3.2) is 

(A.3.2) 
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with the fluxes given by 

31 

F, = 

GH= 

L 

PU 

PU2 + P 

PUV 

(e + PI b 

PV 

PUV 

PV2 + P 

:e + P> 1 

, F, = 

3 G,= 

GM= 

Then the two-dimensional algorithm is constructed as 

u ?I+ * = 1 LWJ Jw4) &JWx,) AXIS,,) q34,)l 
* K34J ~x-4,) &@fxy) qwy) kmx)l~ * u*v 

(A.3.3) 

(A.3.4) 

(A.3.6) 

5Xl/41!1-3 
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with the same definitions as in Section III for rY, u, S2. The two-dimensional scheme 
implementation corresponding to Eqs. (3.8)-(3.14) is as follows: 

(A.3.8) 

u;,p =$ 
CT,, + u!,*> = L,,(df,,) U;,k* (A.3.9) 

and for the y-direction 

U.k = q,k - 2 (G,,k-l, - G,,J 

(A.3.10) 

followed by 

UTk = uyk - + (G:,.k+, - G”,,,,), 

U**=Ujrk- 
J.k . % (GCj,, - GCj.k-l)’ 

uy,; ’ = $ (q,, + uj+$ = Lyy(dc,,) un, 

and finally for the mixed derivative operator 

(A.3.11) 

UJ?,* = (JJ+k - , ~(FZj+,.,--Ff~l,,)-~(G~j.,+,-G~j,,~,), 

q,:’ = f(q,, + q,*) = &,(dfxy) q,k. (A.3.12) 
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In the above the instructions for using forward or backward differencing are the same 
as those given in Section III for the three-dimensional scheme. The above algorithm is 
stable under conditions similar to those given for the three-dimensional case, namely, 

The choice for the maximum eigenvalue of C and D is indicated by the fact that 
yp/P, > A + 2,~ > ,LI for most fluids under non-extreme flow conditions. 
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